miércoles, 1 de mayo de 2013

LEYES DE MENDEL


Introducción
Las Leyes de Mendel son un conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Se consideran reglas más que leyes, pues no se cumplen en todos los casos, por ejemplo cuando los genes están ligados, es decir, se encuentran en el mismo cromosoma. Estas reglas básicas de herencia constituyen el fundamento de la genética . Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866, pero éste fue ignorado por largo tiempo hasta su redescubrimiento en 1900.

 Historia
Las leyes de la herencia fueron derivadas de las investigaciones sobre hibridación entre plantas realizadas por Gregor Mendel, un monje agustino austriaco, en el siglo XIX. Entre los años 1856 y 1863, Mendel cultivó y probó cerca de 28,000 plantas de la especie Pisum sativum (planta del guisante). Sus experimentos le llevaron a concebir dos generalizaciones que después serían conocidas como Leyes de Mendel de la herencia o herencia mendeliana. Las conclusiones se encuentran descritas en su artículo titulado "Experimentos sobre hibridación de plantas" (cuya versión inglesa se denomina “Experiments on Plant Hybridization” y la versión original en alemán “Experimente auf Pflanzenkreuzung) que fue leído a la Sociedad de Historia Natural de Brno el 8 de febrero y el 8 de marzo de 1865y posteriormente publicado en 1866.
Mendel envió su trabajo al botánico suizo Karl von Nägeli (una de las máximas autoridades de la época en el campo de la biología), fue él quien le sugirió querealizara su serie de experimentos en varias especies del género Hieracium. Mendel no pudo replicar sus resultados, ya que posteriormente a su muerte, en 1903, se descubrió que en Hieracium  se producía un tipo especial de partenogénesis, provocando desviaciones en las proporciones mendelianas esperadas.
De su experimento con Hieracium, Mendel posiblemente llegó a pensar que sus leyes sólo podían ser aplicadas a ciertos tipos de especies y, debido a esto, se apartó de la ciencia y se dedicó a la administración del monasterio del cuál era monje. Murió en 1884, completamente ignorado por el mundo científico.
En 1900, sin embargo, el trabajo de Mendel fue redescubierto por tres científicos europeos, el holandés Hugo de Vries, el alemán Carl Correns, y el austríacoErich von Tschermakpor separado, y sin conocer los trabajos de Mendel llegaron a las mismas conclusiones que él.
De Vries fue el primero que publicó sobre las leyes, y Correns, tras haber leído su artículo y haber buscado en la bibliografía publicada, en la que encontró el olvidado artículo de Mendel, declaró que éste se había adelantado y que el trabajo de De Vries no era original.
 En 1900 el conocimiento de las leyes de Mendel. Al dar una conferencia en la Sociedad de Horticultura, tuvo conocimiento del trabajo de Mendel, a través del relato de Hugo de Vries; así encontró el refrendo de lo que había estado experimentando. Él fue, pues, quien dio las primeras noticias en Inglaterra de las investigaciones de Mendel. En 1902, publicó “Los principios mendelianos de la herencia”: una defensa acompañada de la traducción de los trabajos originales de Mendel sobre hibridación. Además, fue el primero en acuñar términos como "genética", "gen" y "alelo" para describir muchos de los resultados de esta nueva ciencia biológica.
En 1902, Theodore Boveri y Walter Sutton, trabajando de manera independiente, llegaron a una misma conclusión y propusieron una base biológica para los principios mendelianos, denominada “Teoría cromosómica de la herencia”. Esta teoría sostiene que los genes se encuentran en los cromosomas y al lugar cromosómico ocupado por un gen se le denominó locus (se habla de loci si se hace referencia al lugar del cromosoma ocupado por varios genes). Ambos se percataron de que la segregación de los factores mendelianos (alelos) se correspondía con la segregación de los cromosomas durante la división meiótica (por tanto, existía un paralelismo entre cromosomas y genes).
Algunos trabajos posteriores de biólogos y estadísticos tales como R.A. Fisher (1911) mostraron que los experimentos realizados por Mendel tenían globalidad en todas las especies, mostrando ejemplos concretos de la naturaleza. Los principios de la segregación equitativa (1ª ley de Mendel) y la transmisión independiente de la herencia (2ª ley de Mendel) derivan de la observación de la progenie de cruzamientos genéticos, no obstante, Mendel no conocía los procesos biológicos que producían esos fenómenos.
Así, puede considerarse que las leyes de Mendel reflejan el comportamiento cromosómico durante la meiosis: la primera ley responde a la migración aleatoria de los cromosomas homólogos a polos opuestos durante la anafase I de la meiosis (tanto los alelos como los cromosomas homólogos segregan de manera equitativa o 1:1 en los gametos) y la segunda ley, al alineamiento aleatorio de cada par de cromosomas homólogos durante la metafase I de la meiosis (por lo que genes distintos y pares diferentes de cromosomas homólogos segregan independientemente).


 Experimentos                                     
Mendel publicó sus experimentos con guisantes en 1865 y 1866. A continuación se describen las principales ventajas de la elección de Pisum sativum como organismo modelo: su bajo coste, tiempo de generación corto, elevado índice de descendencia, diversas variedades dentro de la misma especie (color, forma, tamaño, etc.). Además, reúne características típicas de las plantas experimentales, como poseer caracteres diferenciales constantes.
Los siete caracteres que observó G. Mendel en sus experiencias genéticas con los guisantes.
Los siete caracteres que observó G. Mendel en sus experimentos con diferentes variedades de Pisum sativum.
http://www.ucm.es/info/genetica/grupod/Mendel/FLOR1.BMP
Esquema de la flor de Pisum sativum
Pisum sativum es una planta autógama, es decir, se autofecunda. Mendel lo evitó emasculándola (eliminando las anteras). Así, pudo cruzar exclusivamente las variedades deseadas. También embolsó las flores para proteger a los híbridos de polen no controlado durante la floración.
Llevó a cabo un experimento control realizando cruzamientos durante dos generaciones sucesivas mediante autofecundación para obtener líneas puras para cada carácter.
Mendel llevó a cabo la misma serie de cruzamientos en todos sus experimentos. Cruzó dos variedades o líneas puras diferentes respecto de uno o más caracteres. Como resultado obtenía la primera generación filial (F1), en la cuál observó la uniformidad fenotípica de los híbridos.  Posteriormente, la autofecundación de los híbridos de F1 dio lugar a la segunda generación filial (F2), y así sucesivamente. También realizó cruzamientos recíprocos, es decir, alternaba los fenotipos de las plantas parentales:
♀Px ♂P2
♀Px ♂P1
(siendo P  la generación parental y los subíndices 1 y 2 los diferentes fenotipos de ésta). 
Además, llevó a cabo retrocruzamientos, que consisten en el cruzamiento de los híbridos de la primera generación filial (F1) por los dos parentales utilizados, en las dos direcciones posibles:
♀Fx ♂P2 y ♀Px ♂F1 (cruzamientos recíprocos)
♀Fx ♂P1 y ♀Px ♂F(cruzamientos recíprocos)
Los experimentos demostraron que:
-         la herencia se transmite por elementos particulados (refutando, por tanto, la herencia de las mezclas).
-         siguen normas estadísticas sencillas, resumidas en sus dos principios.

 Leyes de Mendel
 Ley de la segregación de caracteres independientes
Conocida también como la primera Ley de Mendel, de la segregación equitativa o disyunción de los alelos. Esta primera ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3:4 de color amarilla y 1:4 de color verde (3:1).
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno para cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigóticos o heterocigóticos.
1ª ley de Mendel:
Principio de la Segregación
Gametos Femeninos F1
1/2 A
1/2 a
Gametos Masculinos F1
1/2 A
1/4 AA (Fenotipo A)
1/4 Aa (Fenotipo (A)
1/2 a
1/4 Aa (Fenotipo A)
1/4 aa (Fenotipo a)

 Ley de la Transmisión Independiente de Caracteres
Mediante la 2ª Ley, Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.


  1. Primera ley de Mendel

    Enunciado de la ley.- A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1). , y dice que cuando se cruzan dos variedades individuos de raza pura ambos (homocigotos ) para un determinado carácter, todos los híbridos de la primera generación son iguales. 

    El experimento de Mendel.- Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.


  2. Figura 1
    Interpretación del experimento.

    - El polen de la planta progenitora aporta a la descendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla ; de los dos alelos, solamente se manifiesta aquél que es dominante (A), mientras que el recesivo (a) permanece oculto.
    Otros casos para la primera ley.- La primera ley de Mendel se cumple también para el caso en que un determinado gen de lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche" (Mirabilis jalapa). Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas. La interpretación es la misma que en el caso anterior, solamente varía la manera de expresarse los distintos alelos.

    Figura 2
  3. Segunda ley de Mendel


    Enunciado de la ley.
    - A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos. 

    El experimento de Mendel. 

    Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior (figura 1) y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura 3. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunada generación. 
    Figura 3
    Interpretación del experimento.Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.
    Otros casos para la segunda ley. En el caso de los genes que presentan herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) del cruce que se observa en la figura  y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas, en la proporción que se indica en el esquema de la figura 4.También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.

    Figura 4
    Retrocruzamiento

  4. Retrocruzamiento de prueba

    . En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo.
    La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigota recesiva (aa).
    Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.(figura 5).
    Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%. (figura 6).

    figura 5
    figura 6

    Tercera ley de Mendel


    Enunciado de la ley.Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
    El experimento de Mendel. Mendel cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).

     (Figura 7)Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan elcolor amarillo y la forma lisa.
    Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).

    Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas y que pueden verse en la figura 8. En el cuadro de la figura 9 se ven las semillas que aparecen y en las proporciones que se indica.
    Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).
    Asímismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley.

    Figura 9
    Interpretación del experimento. Los resultados de los experimentos de la tercera ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación trás generación. Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. No se cumple cuando los dos genes considerados se encuentran en un mismo cromosoma, es el caso de los genes ligados.


Glosario
FACTOR MENDELIANO: El concepto de factor mendeliano fue introducido en 1860 por Mendel, actualmente denominado gen, éste se puede definir como una unidad física y funcional  que ocupa una posición específica en el genoma.
GEN: Es una región de DNA que codifica para RNA.
GENOTIPO: factores hereditarios internos de un organismo, sus genes y por extensión su genoma.
FENOTIPO: las cualidades físicas observables en un organismo, incluyendo su morfología, fisiología y conducta a todos los niveles de descripción.
ALELO: Es cada una de las variantes de un locus. Cada alelo aporta diferentes variaciones al carácter que afecta.
En organismos diploides (2n)  los alelos de un mismo locus se ubican físicamente en los pares de cromosomas homólogos.
LOCUS: Ubicación del gen en un cromosoma. Para un locus puede haber varios alelos posibles. (Plural: LOCI)
CARIOTIPO: Composición fotográfica de los pares de cromosomas de una célula, ordenados según un patrón estándar. En un cariotipo encontramos el conjunto de características que permiten reconocer la dotación cromosómica de una célula.
LINEA PURA: Es la descendencia de uno o más individuos de constitución genética idéntica, obteniéndose por autofecundación o cruces endogámicos. Son individuos homocigotos para todos sus caracteres.
AUTOFECUNDACIÓN: Proceso de reproducción sexual donde los gametos masculinos de un individuo se fecundan con los óvulos del mismo individuo. Es indispensable que sean especies monoicas (característico de las plantas y algunos animales inferiores).
DOMINANCIAPredominio de la acción en un factor de herencia (gen) sobre la de su alternativo (llamado recesivo), enmascarando u ocultando sus efectos. El carácter hereditario dominante es el que se manifiesta en el fenotipo (conjunto de las propiedades manifiestas en un individuo).
Según la terminología mendeliana se expresa como A>a (el alelo A domina sobre el alelo a, el carácter que determina, es por tanto el que observaremos en el fenotipo).
RECESIVIDAD: Característica del alelo recesivo de un gen que no se manifiesta cuando está presente el alelo dominante. Para que este alelo se observe en el fenotipo, el organismo debe poseer dos copias del mismo alelo, es decir, debe ser homocigoto para ese gen (según la terminología mendeliana, se expresaría como “aa”).
MEIOSIS: La meiosis es el proceso de división celular que permite a una célula diploide generar células haploides en eucariotas. En este proceso se produce una replicación del DNA (en la fase S) y dos segregaciones cromosómicas, de manera que de una célula inicial diploide se obtienen cuatro células haploides.
HOMOCIGOTO: Individuo puro para uno o más caracteres, es decir, que en ambos loci posee el mismo alelo (representado como aa en el caso de ser recesivo o AA si es dominante).
HETEROCIGOTO: Individuo que para un gen, tiene un alelo distinto en cada cromosoma homólogo. Su representación mendeliana es “Aa”.
HÍBRIDO: Es el resultado del cruzamiento o apareamiento de dos individuos puros homocigotos (uno de ellos recesivo y el otro dominante) para uno o varios caracteres.
GAMETO: Célula sexual que procede de una estirpe celular llamada línea germinal, en los seres superiores tienen un número de cromosomas haploide (n) debido a un tipo de división celular llamado meiosis que permite reducir el número de cromosomas a la mitad.
El gameto femenino se denomina óvulo; el gameto masculino recibe el nombre de espermatozoide.
CIGOTO O HUEVO: Célula resultante de la unión de dos gametos haploides (es por tanto, diploide, 2n). Generalmente, experimenta una serie de divisiones celulares hasta que se constituye en un organismo completo. Su citoplasma y sus orgánulos son siempre de origen materno al proceder del óvulo.
HAPLOIDE: Que posee un solo juego de cromosomas (n), característico de los gametos eucariotas y los gametofitos de las plantas.
DIPLOIDE: Que tiene doble juego de cromosomas (2n). Características de las células somáticas.
AUTOSOMA: Todo cromosoma que no sea sexual.


BIBLIOGRAFÍA
Libros
Griffiths, A.J.F., S.R. Wessler, R.C. Lewontin & S.B. Carrol (2008). Introducción al análisis genético. 9th edición. McGraw-Hill Interamericana
Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, Walter. Introducción a la Biología Celular. Editorial Médica Panamericana.

Internet

No hay comentarios:

Publicar un comentario